14,092 research outputs found

    The Bosonic Structure of Fermions

    Full text link
    We bosonize fermions by identifying their occupation numbers as the binary digits of a Bose occupation number. Unlike other schemes, our method allows infinitely many fermionic oscillators to be constructed from just one bosonic oscillator.Comment: 7pages, ADP-94-13/T15

    A Generic Conceptual Model for Risk Analysis in a Multi-agent Based Collaborative Design Environment

    Get PDF
    Organised by: Cranfield UniversityThis paper presents a generic conceptual model of risk evaluation in order to manage the risk through related constraints and variables under a multi-agent collaborative design environment. Initially, a hierarchy constraint network is developed to mapping constraints and variables. Then, an effective approximation technique named Risk Assessment Matrix is adopted to evaluate risk level and rank priority after probability quantification and consequence validation. Additionally, an Intelligent Data based Reasoning Methodology is expanded to deal with risk mitigation by combining inductive learning methods and reasoning consistency algorithms with feasible solution strategies. Finally, two empirical studies were conducted to validate the effectiveness and feasibility of the conceptual model.Mori Seiki – The Machine Tool Compan

    The Witten equation, mirror symmetry and quantum singularity theory

    Full text link
    For any non-degenerate, quasi-homogeneous hypersurface singularity, we describe a family of moduli spaces, a virtual cycle, and a corresponding cohomological field theory associated to the singularity. This theory is analogous to Gromov-Witten theory and generalizes the theory of r-spin curves, which corresponds to the simple singularity A_{r-1}. We also resolve two outstanding conjectures of Witten. The first conjecture is that ADE-singularities are self-dual; and the second conjecture is that the total potential functions of ADE-singularities satisfy corresponding ADE-integrable hierarchies. Other cases of integrable hierarchies are also discussed.Comment: To appear in Annals of Mathematics. Includes resolution of the Witten ADE integrable hierarchies conjecture and Witten's ADE self-mirror conjecture. Several corrections and clarification

    Single-shot electro-optic sampling of coherent transition radiation at the A0 Photoinjector

    Full text link
    Future collider applications and present high-gradient laser plasma wakefield accelerators operating with picosecond bunch durations place a higher demand on the time resolution of bunch distribution diagnostics. This demand has led to significant advancements in the field of electro-optic sampling over the past ten years. These methods allow the probing of diagnostic light such as coherent transition radiation or the bunch wakefields with sub-picosecond time resolution. Potential applications in shot-to-shot, non-interceptive diagnostics continue to be pursued for live beam monitoring of collider and pump-probe experiments. Related to our developing work with electro-optic imaging, we present results on single-shot electro-optic sampling of the coherent transition radiation from bunches generated at the A0 photoinjector.Comment: 3 p

    Identifying network communities with a high resolution

    Full text link
    Community structure is an important property of complex networks. An automatic discovery of such structure is a fundamental task in many disciplines, including sociology, biology, engineering, and computer science. Recently, several community discovery algorithms have been proposed based on the optimization of a quantity called modularity (Q). However, the problem of modularity optimization is NP-hard, and the existing approaches often suffer from prohibitively long running time or poor quality. Furthermore, it has been recently pointed out that algorithms based on optimizing Q will have a resolution limit, i.e., communities below a certain scale may not be detected. In this research, we first propose an efficient heuristic algorithm, Qcut, which combines spectral graph partitioning and local search to optimize Q. Using both synthetic and real networks, we show that Qcut can find higher modularities and is more scalable than the existing algorithms. Furthermore, using Qcut as an essential component, we propose a recursive algorithm, HQcut, to solve the resolution limit problem. We show that HQcut can successfully detect communities at a much finer scale and with a higher accuracy than the existing algorithms. Finally, we apply Qcut and HQcut to study a protein-protein interaction network, and show that the combination of the two algorithms can reveal interesting biological results that may be otherwise undetectable.Comment: 14 pages, 5 figures. 1 supplemental file at http://cic.cs.wustl.edu/qcut/supplemental.pd

    The Observable Thermal and Kinetic Sunyaev-Zel'dovich Effect in Merging Galaxy Clusters

    Full text link
    The advent of high-resolution imaging of galaxy clusters using the Sunyaev-Zel'dovich Effect (SZE) provides a unique probe of the astrophysics of the intracluster medium (ICM) out to high redshifts. To investigate the effects of cluster mergers on resolved SZE images, we present a high-resolution cosmological simulation of a 1.5E15 M_sun adiabatic cluster using the TreeSPH code ChaNGa. This massive cluster undergoes a 10:3:1 ratio triple merger accompanied by a dramatic rise in its integrated Compton-Y, peaking at z = 0.05. By modeling the thermal SZE (tSZ) and kinetic SZE (kSZ) spectral distortions of the Cosmic Microwave Background (CMB) at this redshift with relativistic corrections, we produce various mock images of the cluster at frequencies and resolutions achievable with current high-resolution SZE instruments. The two gravitationally-bound merging subclusters account for 10% and 1% of the main cluster's integrated Compton-Y, and have extended merger shock features in the background ICM visible in our mock images. We show that along certain projections and at specific frequencies, the kSZ CMB intensity distortion can dominate over the tSZ due to the large line of sight velocities of the subcluster gas and the unique frequency-dependence of these effects. We estimate that a one-velocity assumption in estimation of line of sight velocities of the merging subclusters from the kSZ induces a bias of ~10%. This velocity bias is small relative to other sources of uncertainty in observations, partially due to helpful bulk motions in the background ICM induced by the merger. Our results show that high-resolution SZE observations, which have recently detected strong kSZ signals in subclusters of merging systems, can robustly probe the dynamical as well as the thermal state of the ICM.Comment: MNRAS, accepted. 13 pages, 9 figure
    • …
    corecore